
io_uring and networking in 2023

Introduction
As an IO model, io_uring is applicable to both storage and networking applications. In

UNIX, it’s often touted that “everything is a file”. And while that is (mostly) true, once

you have to do IO to the file, then all files are not created equal and must in fact be

treated differently.

With its completion model based design, converting storage applications to use io_uring

is trivial, and can be done in steps:

1) Initial conversion from eg libaio to io_uring

2) Honing the conversion by utilizing applicable advanced features that are

exclusive to io_uring.

For networking, the path to idiomatic and efficient io_uring is a bit more involved.

Network applications have been written with a readiness type of model for decades,

most commonly using epoll(2) these days to get notified when a given socket has data

available. While these applications can be adapted to io_uring by swapping epoll

notifiers with io_uring notifiers, going down that path does not lead to an outcome that

fully takes advantage of what io_uring offers. It’ll potentially provide a reduction of

system calls compared to epoll, but will not be able to take advantage of some of the

other features that io_uring offers. To do that, a change to the IO event loop must be

done.

This document aims to highlight some of the features that are available and tailored to

networked applications, and assumes that the reader is already familiar with io_uring

basics. It does not attempt to be a case study in gains achievable by switching from epoll

to io_uring.

Batching
One of the key benefits of io_uring is that multiple actions can be completed in a single

system call. This is readily apparent in how retrieving and preparing a new SQE for

submission (io_uring_get_sqe() + io_uring_prep_foo(sqe)) is done separately

from informing the kernel (io_uring_submit()) that new requests are available for

processing.



The io_uring system call for submitting new IO, io_uring_enter(2), also supports

waiting for completions at the same time. This was an important design decision, as it

allows IO that completes synchronously to be done efficiently, compared to async APIs

that separate submission and wait-for-completion into two different operations. liburing

has support for this through the io_uring_submit_and_wait() helper, allowing an

application to not only batch submissions, but also combine submissions and

completions into a single system call.

This comes in handy in IO event loops, where reaping completions will often yield new

operations that need to be submitted. An application can process these completions

while simultaneously grabbing new SQEs and preparing them for submission, and

finally run another io_uring_submit_and_wait() to repeat the event loop.

Relevant man pages: io_uring_submit_and_wait(3), io_uring_get_sqe(3),

io_uring_submit(3)

Multi-shot
By default, any SQE submitted will yield a single completion event, a CQE. For example,

an application submits a read, and once that read completes, a completion event is

posted and this completes the operation. However, io_uring also supports multi-shot

requests. These types of requests are submitted once, and will post a completion

whenever the operation is triggered.

Consider a network application that accepts new connections. The application could

retrieve an SQE and use io_uring_prep_accept() to be notified when a connection

request is received. Once the connection request comes in, a completion is posted with

the file descriptor, and now the application has to submit a new accept SQE to handle

future connections.

The application could also choose to utilize multi-shot accept by instead using

io_uring_prep_multishot_accept() to prepare the request. By doing so, that

informs io_uring that it should not finish the request fully once a single connection has

been accepted. Rather, it should keep it active and post a CQE whenever a new

connection request comes in. This reduces the housekeeping the application needs to do

when handling new connections. Available since 5.19.

By default, multi-shot requests will remain active until:



a) They get canceled explicitly by the application (eg using

io_uring_prep_cancel() and friends), or

b) The request itself experiences an error.

If further notifications are expected from a multi-shot request, the CQE completion will

have IORING_CQE_F_MORE set in the flags member of the io_uring_cqe structure. If

this flag isn’t set, the application must re-arm this request by submitting a new one. As

long as that flag is set on received CQEs for a request, the application can expect more

completions from the original SQE submission.

Accept is not the only request type that supports multi-shot. Outside of accepting

connections, it’s not unreasonable to expect that networked applications will be

receiving data from a socket. If multiple requests are expected, then a multi-shot variant

of the receive operation is also applicable. Rather than use io_uring_prep_recv() to

receive data, io_uring_prep_recv_multishot() prepares an SQE for multi-shot

receive. Just like with accept, a multi-shot receive is submitted once, and completions

are posted whenever data arrives on this socket. The astute reader may now be

wondering “but where is the received data placed?”. For that, io_uring supports a

concept called “provided buffers” which is detailed in the next section. Receive

multi-shot is available since 6.0.

Outside of receive and accept, io_uring also supports the multi-shot operation for poll

requests. The concept is identical - arm a poll request once, and get a notification

whenever the specified poll mask becomes true. Available since 5.13.

Relevant man pages: io_uring_prep_recv_multishot(3),

io_uring_prep_multishot_accept(3), io_uring_prep_poll_multishot(3)

Provided buffers
A readiness based IO model has the distinct advantage of providing an opportune

moment to provide a buffer for receiving data - once a readiness notification arrives on a

given socket, a suitable buffer can be picked and transfer of data can be started. This

isn’t true with a completion based model, as a receive operation is submitted ahead of

time. Obviously a buffer can be picked by the application when the receive is submitted,

but for applications handling hundreds of thousands of requests at the time, this doesn’t

scale very well and leads to excessive memory consumption.

Instead, io_uring supports a mechanism called provided buffers. The application sets

aside a pool of buffers, and informs io_uring of those buffers. This allows the kernel to



pick a suitable buffer when the given receive operation is ready to actually receive data,

rather than upfront. The CQE posted will then additionally hold information about

which buffer was picked.

io_uring supports two types of provided buffers:

1) The old/legacy type done through io_uring_prep_provide_buffers() which

has been supported Linux 5.7

2) The newer type, called ring mapped buffers, supported since 5.19.

The two types work identically, the only difference is in how they are provided by the

application. The newer type is vastly more efficient (see commit), and should be

preferred by applications.

Provided buffers are identified by a buffer group ID, and within that group, a buffer ID.

Buffer groups are intended to allow an application to maintain different types of buffers

in individual groups. An example of that would be splitting buffers into different groups

based on their sizes. Buffer IDs must be unique within a buffer group.

An application must first register a buffer ring for each group ID it wishes to use. This is

done via io_uring_register_buf_ring(), which sets up a shared ring buffer between

the kernel and the application. Once registered, the application may use

io_uring_buf_ring_add() to add buffers to this group ring, making them available for

the kernel to consume. This effectively hands ownership of these buffers to the kernel.

In return, once consumed, the kernel will tell the application about which buffer ID

from which group ID was used, now handing ownership over to the application again.

Once a suitable amount of buffers have been added, the application must call

io_uring_buf_ring_advance() with the amount of added buffers, making them

visible to the kernel.

Once the application has processed the buffer, it may hand ownership back over to the

kernel, allowing the cycle to repeat.

Using provided buffers, an application can submit a receive operation without providing

a buffer upfront. Instead, it must set IOSQE_BUFFER_SELECT in the SQE flags

member, and the buffer group from which the buffer should be picked in the buf_group

member. No address should be given for these request, instead NULL should be used.

Once the receive operation is ready to receive data, a buffer is picked automatically and

the resulting CQE will contain the buffer ID in its output flags member. The CQE will

have IORING_CQE_F_BUFFER set in its flags as well, telling the application that a buffer

was automatically picked for this operation.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c7fb19428d67dd0a2a78a4f237af01d39c78dc5a


Depending on the rate of arrival of data, it is obviously possible that a given buffer group

will run out of buffers before new ones can be supplied. If this happens, a request will

fail with -ENOBUFS as the error value. One way to deal with that is to have multiple

buffer groups for the same type of buffer and round-robin between them. Once an

out-of-buffers error is received,the application can replenish that buffer group and swap

to using the next one, while rearming the multi-shot (or normal) receive.

Setting up a buffer ring can seem a bit daunting. Since the data is mapped by the kernel,

we’ll need to ensure that the shared memory is page size aligned. Here’s an example of

how to setup a buffer ring and fill it with buffers:

struct io_uring_buf_ring *setup_buffer_ring(struct io_uring *ring)

{

struct io_uring_buf_reg reg = { };

struct io_uring_buf_ring *br;

int i;

/* allocate mem for sharing buffer ring */

if (posix_memalign((void **) &br, 4096,

BUFS_IN_GROUP * sizeof(struct io_uring_buf_ring)))

return NULL;

/* assign and register buffer ring */

reg.ring_addr = (unsigned long) br;

reg.ring_entries = BUFS_IN_GROUP;

reg.bgid = BUF_BGID;

if (io_uring_register_buf_ring(ring, &reg, 0))

return 1;

/* add initial buffers to the ring */

io_uring_buf_ring_init(br);

for (i = 0; i < BUFS_IN_GROUP; i++) {

/* add each buffer, we'll use i buffer ID */

io_uring_buf_ring_add(br, bufs[i], BUF_SIZE, i,

io_uring_buf_ring_mask(BUFS_IN_GROUP), i);

}

/* we've supplied buffers, make them visible to the kernel */

io_uring_buf_ring_advance(br, BUFS_IN_GROUP);



return br;

}

This example uses 4096 as the page size, a real application would use

sysconf(_SC_PAGESIZE) or similar to retrieve it. When retrieving a CQE, the

application would do:

io_uring_wait_cqe(ring, &cqe);

/* IORING_CQE_F_BUFFER is set in cqe->flags, get buffer ID */

buffer_id = cqe->flags >> IORING_CQE_BUFFER_SHIFT;

/* find the buffer from our buffer pool */

buf = bufs[buffer_id];

[... app work happens here ...]

/* we’re done with the buffer, add it back */

io_uring_buf_ring_add(br, bufs[buffer_id], BUF_SIZE, buffer_id,

io_uring_buf_ring_mask(BUFS_IN_GROUP), 0);

/* make it visible */

io_uring_buf_ring_advance(br, 1);

/* CQE has been seen */

io_uring_cqe_seen(ring, cqe);

If replenishing a buffer is done in conjunction with incrementing the CQ ring, like in the

example above, it’s also possible to combine the buffer ring and CQ ring advance into a

single operation:

/* mark CQE as seen and update buffer ring index */

io_uring_buf_ring_cq_advance(ring, br, 1);

Relevant man pages: io_uring_register_buf_ring(3),

io_uring_buf_ring_add(3), io_uring_buf_ring_advance(3),

io_uring_buf_ring_cq_advance(3), io_uring_enter(2)

Socket state
By default, io_uring will attempt a receive operation when submitted. If no data is

available, it’ll rely on an internal poll implementation to get notified when data is

available. To aid the application in helping io_uring make more informed decisions on

when to receive, io_uring will tell the application if a given socket had more data to be

read, and similarly allow the application to control whether to go directly to internal poll



rather than attempt a receive upfront. This can help increase efficiency by not

attempting a receive on a socket that is presumed (or most likely) empty.

When a CQE is posted for any of the receive variants that io_uring supports, the flags

member also contains information on if the socket was empty after the receive had been

completed. If IORING_CQE_F_SOCK_NONEMPTY is set in the cqe flags, then the socket

had more data available post receive. This may be because the receive asked for less data

than was originally available, or perhaps more data arrived after the receive was

submitted. Available since 5.19.

Conversely, when submitting a receive operation, if the socket is assumed currently

empty, then it is pointless to first attempt a receive and then fall back to internal poll.

For this case, the application may set IORING_RECVSEND_POLL_FIRST in the SQE

ioprio member to tell io_uring to not bother with attempting the send/receive initially,

rather it should go directly to internal poll and wait for notification on when data/space

is available.

IORING_RECVSEND_POLL_FIRST is available for both send and receive operations. Note

that if this flag is set and data/space IS available on submission, the operation will

proceed right away. Available since 5.19.

Relevant man pages: io_uring_prep_send(3), io_uring_prep_sendmsg(3),

io_uring_prep_recv(3), io_uring_prep_recvmsg(3).

Task work
As mentioned in the previous section, io_uring relies on an internal poll mechanism to

trigger (or re-trigger) operations. Once an operation is ready to proceed, task_work is

used to process it. As the name suggests, task_work is run by the task itself, specifically

the task that originally submitted the request. By default, task work is run whenever an

application transitions between kernel and userspace. Following from this, depending

on how the task is notified of the existence of task work, it may include a forced

transition between kernel and userspace. Internally this is done with an IPI, or

inter-processor interrupt, which will trigger a reschedule of the task. This is similar to

how a task ends up processing signals.

Being rudely interrupted by a signaled notification may adversely affect the performance

of the application. If that application is busy processing data, then a forced transition in

and out of the kernel will slow that down. Luckily, io_uring provides a way to avoid that.

When initially creating the ring, the application may set IORING_SETUP_COOP_TASKRUN.



Doing so will avoid the IPI and forced reschedule of the task when task_work is queued,

deferring it to when a user/kernel transition happens next time. This is generally

whenever a system call is performed. Depending on how events are waited for and

processed, the application may also set IORING_SETUP_TASKRUN_FLAG which will then

flag the ring as needing a syscall to process task_work. This can be useful if the

application relies on io_uring_peek_cqe() to know if completions may be available

for reaping, and tells liburing that io_uring_enter(2) needs to be run to force a

transition to the kernel to complete these events. Available since 5.19.

One potential downside of IORING_SETUP_COOP_TASKRUN is that task_work is still run

on every transition to/from the kernel. A busy networked application may perform tons

of system calls that are not related to io_uring, and each of these will run task work

when returning to userspace. This makes it hard for an application to achieve good

batching of completions. To better manage this, IORING_SETUP_DEFER_TASKRUN was

introduced. If set at ring creation time, task work is handled explicitly when an

application waits for completions. In real life applications, this has shown to yield very

nice benefits in terms of efficiency, as it gives the application full control over the

batching on the completion side as well. Note that IORING_SETUP_DEFER_TASKRUN must

be used in conjunction with IORING_SETUP_SINGLE_ISSUER, which tells io_uring that

this ring only allows a single application to submit requests. This enables further

internal optimizations as well. Not sharing a ring between threads is the recommended

way to use rings in general, as it avoids any unnecessary synchronization. Available

since 6.1.

Relevant man pages: io_uring_setup(2), io_uring_queue_init(3),

io_uring_queue_init_params(3)

Ring messages
Ring messages provide a way to send messages between rings. This may be used to

simply wake up a task waiting on a ring, or it may be used to pass data between two

rings.

The simplest way to use ring messages is to just transfer 8 bytes of data between them.

io_uring treats the data as a cookie and doesn’t interpret it, hence it can be used to

transfer either a pointer or simply an integer value. One use case might be a backend

handling new connections and separate threads dealing with said connections,

providing a way to pass a connection from one ring to another.

io_uring_prep_msg_ring() is a way to set up such an SQE. Or it may be used directly



from the thread handling a given connection, to offload expensive work to another

thread. Available since 5.18.

Another use case may be passing file descriptors between rings, particularly when using

direct descriptors. One use case here may be a backend accepting requests with direct

descriptors, and passing an incoming connection to a different thread. Available since

6.0.

Relevant man pages: io_uring_prep_msg_ring(3),

io_uring_prep_msg_ring_cqe_flags(3), io_uring_prep_msg_ring_fd(3),

io_uring_register_files(3)

Conclusion
The above are just some of the optimizations and features that are available for

applications to take advantage of in more recent kernels. While this document is mostly

centered around networking, some of them are equally applicable to other types of IO

done through io_uring as well. It should also not be considered a complete guide, other

optimizations and features exist that may improve performance and/or reduce overhead

as well. One example of that is direct descriptors, avoid use of a shared file descriptor

table between threads. Another would be the zero-copy transmit that io_uring supports.

Those topics will be featured in a future installment.

Also important to note that most of the above features came about from adopting

io_uring in networked applications, like Thrift. As more adoptions in the networking

space are done, there certainly will be more opportunities to innovate in this space, and

as a result, this document is also very much a work in progress.
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